Взаимодействие заряженных тел. Взаимодействие заряженных тел, законы электродинамики 2 взаимодействие заряженных тел

В рамках сегодняшнего занятия мы познакомимся с такой физической величиной, как заряд, увидим примеры передачи зарядов от одного тела к другому, узнаем о разделении зарядов на два типа и о взаимодействии заряженных тел.

Тема: Электромагнитные явления

Урок: Электризация тел при соприкосновении. Взаимодействие заряженных тел. Два рода зарядов

Данный урок является вводным в новый раздел «Электромагнитные явления», и на нем мы обсудим основные понятия, которые с ним связаны: заряд, его виды, электризация и взаимодействие заряженных тел.

История возникновения понятия «электричество»

Прежде всего, следует начать с обсуждения такого понятия, как электричество. В современном мире мы постоянно с ним сталкиваемся на бытовом уровне и уже не можем представить свою жизнь без компьютера, телевизора, холодильника, электроосвещения и т. п. Все эти приборы, насколько известно, работают благодаря электрическому току и окружают нас повсеместно. Даже изначально не полностью зависящие от электричества технологии, такие как работа двигателя внутреннего сгорания в автомобиле, начинают медленно отходить в историю, и их место активно занимают электродвигатели. Так откуда же пошло такое слово, как «электрический»?

Слово «электрический» происходит от греческого слова «электрон», что в переводе означает «янтарь» (ископаемая смола, рис. 1). Хотя следует, конечно же, сразу оговорить, что непосредственной связи между всеми электрическими явлениями и янтарем нет, и мы немного позже поймем, откуда взялась такая ассоциация у древних ученых.

Первые наблюдения электрических явлений относят к 5-6 вв до н. э. Считается, что Фалес Милетский (древнегреческий философ и математик из Милета, рис. 2) впервые пронаблюдал электрическое взаимодействие тел. Он провел следующий опыт: натер янтарь мехом, затем приблизил его к небольшим телам (пылинкам, стружке или перьям) и пронаблюдал, что эти тела стали притягиваться к янтарю без объяснимой на то время причины. Фалес был не единственным ученым, который впоследствии активно проводил электрические опыты с янтарем, что и привело к возникновению слова «электрон» и понятию «электрический».

Рис. 2. Фалес Милетский ()

Смоделируем аналогичные опыты с электрическим взаимодействием тел, для этого возьмем мелко нарезанную бумагу, стеклянную палочку и лист бумаги. Если натереть стеклянную палочку о лист бумаги, а затем подвести ее к мелко нарезанным бумажкам, то будет виден эффект притяжения мелких кусочков к стеклянной палочке (рис. 3).

Интересен тот факт, что впервые такой процесс был достаточно полно объяснен только в 16 веке. Тогда стало известно, что существует два вида электричества, и они взаимодействуют друг с другом. Понятие электрического взаимодействия появилось в середине 18 века и связано с именем американского ученого Бенджамина Франклина (рис. 4). Именно он впервые ввел такое понятие, как электрический заряд.

Рис. 4. Бенджамин Франклин ()

Определение. Электрический заряд - физическая величина, которая характеризует величину взаимодействия заряженных тел.

То, что мы имели возможность пронаблюдать на опыте с притяжением бумажек к наэлектризованной палочке, доказывает наличие сил электрического взаимодействия, а величину этих сил характеризует такое понятие, как заряд. То, что силы электрического взаимодействия могут быть различными, легко проверяется экспериментальным путем, например, при натирании одной и той же палочки с различной интенсивностью.

Для проведения следующего опыта нам понадобится все та же стеклянная палочка, лист бумаги и бумажный султан, закрепленный на железном стержне (рис. 5). Если потереть палочку листом бумаги, а затем прикоснуться ей к железному стержню, то будет заметно явление отталкивания полосок бумаги султана друг от друга, причем, если повторить натирание и прикосновение несколько раз, то будет видно, что эффект усиливается. Наблюдаемое явление называют электризацией.

Рис. 5. Бумажный султан ()

Определение. Электризация - разделение электрических зарядов в результате тесного контакта двух или более тел.

Электризация может происходить несколькими способами, первые два мы сегодня рассмотрели:

Электризация трением;

Электризация прикосновением;

Электризация наведением.

Рассмотрим электризацию наведением. Для этого возьмем линейку и положим ее на вершину железного стержня, на котором закреплен бумажный султан, после этого прикоснемся к стержню, чтобы снять на нем заряд, и расправим полоски султана. Затем наэлектризуем стеклянную палочку трением о бумагу и подведем ее к линейке, результатом станет то, что линейка начнет вращаться на вершине железного стержня. При этом стеклянной палочкой прикасаться к линейке не следует. Это доказывает то, что существует электризация без непосредственного соприкосновения между телами - электризация наведением.

Первые исследования значений электрических зарядов датируются более поздним периодом истории, чем открытие и попытки описания электрических взаимодействий тел. В конце 18 века ученые пришли к выводу, что деление заряда приводит к двум принципиально различным результатам, и было принято решение условно разделить заряды на два типа: положительные и отрицательные. Для того чтобы была возможность различать эти два типа зарядов и определять, какой является положительным, а какой - отрицательным, договорились использовать два базовых опыта: если потереть стеклянную палочку о бумагу (шелк), то на палочке образуется положительный заряд; если потереть эбонитовую палочку о мех, то на палочке образуется отрицательный заряд (рис. 6).

Замечание. Эбонит - материал из каучука с большим содержанием серы.

Рис. 6. Электризация палочек двумя типами зарядов ()

Кроме того, что было введено разделение зарядов на два типа, было замечено правило их взаимодействия (рис. 7):

Одноименные заряды отталкиваются;

Разноименные заряды притягиваются.

Рис. 7. Взаимодействие зарядов ()

Рассмотрим к этому правилу взаимодействия следующий эксперимент. Наэлектризуем стеклянную палочку трением (т. е. передадим ей положительный заряд) и прикоснемся ей к стержню, на котором закреплен бумажный султан, в результате увидим эффект, который уже обсуждали ранее, - полоски султана начнут отталкиваться друг от друга. Теперь можно пояснить, почему такое явление имеет место - поскольку полоски султана заряжаются положительно (одноименно), то они начинают отталкиваться, насколько это возможно, и образуют фигуру в форме шара. Кроме того, для более наглядной демонстрации отталкивания одноименно заряженных тел можно натертую бумагой стеклянную палочку поднести к наэлектризованному султану, и будет явно видно, как полоски бумаги будут отклоняться от палочки.

Одновременно два явления - притяжение разноименно заряженных тел и отталкивание одноименно заряженных - можно пронаблюдать на следующем опыте. Для него необходимо взять стеклянную палочку, бумагу и гильзу из фольги, закрепленную нитью на штативе. Если натереть палочку бумагой и поднести ее к незаряженной гильзе, то гильза сначала притянется к палочке, а после прикосновения начнет отталкиваться. Поясняется это тем, что сначала гильза, пока не будет иметь заряда, притянется к палочке, палочка передаст ей часть своего заряда, и одноименно заряженная гильза оттолкнется от палочки.

Замечание. Однако остается вопрос о том, почему же изначально незаряженная гильза притягивается к палочке. Объяснить это, используя доступные нам на сегодняшнем этапе изучения школьной физики знания, сложно, однако, попробуем, забегая вперед, это вкратце сделать. Поскольку гильза является проводником, то, оказавшись во внешнем электрическом поле, в ней наблюдается явление разделения заряда. Оно проявляется в том, что свободные электроны в материале гильзы перемещаются в сторону, которая наиболее близка к положительно заряженной палочке. В результате гильза становится разделенной на две условные области: одна заряжена отрицательно (там, где избыток электронов), другая - положительно (там, где недостаток электронов). Поскольку отрицательная область гильзы расположена ближе к положительно заряженной палочке, чем ее положительно заряженная часть, то будет преобладать притяжение между разноименными зарядами и гильза притянется к палочке. После этого оба тела приобретут одноименный заряд и оттолкнутся.

Более подробно этот вопрос рассматривается в 10 классе в теме: «Проводники и диэлектрики во внешнем электрическом поле».

На следующем уроке будет рассмотрен принцип работы такого устройства, как электроскоп.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
  2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.
  1. Энциклопедия Брокгауза Ф.А. и Ефрона И.А. ().
  2. YouTube ().
  3. YouTube ().

Домашнее задание

  1. Стр. 59: вопросы № 1-4. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  2. Шарик из металлической фольги был заряжен положительно. Его разрядили, и шарик стал нейтральным. Можно ли утверждать, что заряд шарика исчез?
  3. На производстве для улавливания пыли или уменьшения выбросов воздух очищают с помощью электрофильтров. В этих фильтрах воздух проходит мимо противоположно заряженных металлических стержней. Почему пыль притягивается к этим стержням?
  4. Существует ли способ зарядить хотя бы часть тела положительно или отрицательно, не касаясь этого тела другим заряженным телом? Ответ обоснуйте.

1.Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.

Законы взаимодействия атомов и молекул удается понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряженное ядро, вокруг которого вращаются по определенным орбитам отрицательно заряженные частицы. Взаимодействие между заряженными частицами называется электромагнитным. Интенсивность электромагнитного взаимодействия определяется физической величиной - электрическим зарядом, который обозначается q. Единица электрического заряда - кулон (Кл). 1 кулон - это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух видов зарядов. Один вид заряда назвали положительным, носителем элементарного положительного заряда является протон. Другой вид заряда назвали отрицательным, его носителем является электрон. Элементарный заряд равен Заряд частиц всегда представляется числом, кратным величине элементарного заряда.

Полный заряд замкнутой системы (в которую не входят заряды извне), т. е. алгебраическая сумма зарядов всех тел, остается постоянной: q1 + q2 + ... + qn = const. Электрический заряд не создается и не исчезает, а только переходит от одного тела к другому. Этот экспериментально установленный факт называется законом сохранения электрического заряда. Никогда и нигде в природе не возникает и не исчезает электрический заряд одного знака. Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц - электронов - от одних тел к другим.

Электризация - это сообщение телу электрического заряда. Электризация может происходить, например, при соприкосновении (трении) разнородных веществ и при облучении. При электризации в теле возникает избыток или недостаток электронов.

В случае избытка электронов тело приобретает отрицательный заряд, в случае недостатка - положительный.

Законы взаимодействия неподвижных электрических зарядов изучает электростатика.

Основной закон электростатики был экспериментально установлен французским физиком Шарлем Кулоном и читается так: модуль силы взаимодействия двух точечных неподвижных электрических зарядов в вакууме прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними.

Г - расстояние между ними, k - коэффициент пропорциональности, зависящий от выбора системы единиц, в СИ

Величина, показывающая, во сколько раз сила взаимодействия зарядов в вакууме больше, чем в среде, называется диэлектрической проницаемостью среды Е. Для среды с диэлектрической проницаемостью е закон Кулона записывается следующим образом:

В СИ коэффициент k принято записывать следующим образом:

Электрическая постоянная, численно равная

Использованием электрической постоянной закон Кулона имеет вид:

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулонов-ским взаимодействием. Кулоновские силы можно изобразить графически (рис. 20, 21).

Электростатика

Элек­три­че­ский заряд



Закон Кулона

Закон Ку­ло­на

Крутильные весы:Крутильные весы

Электродинамика

7. Электрическим током называют упорядоченное движение заряженных частиц или заряженных макроскопических тел. Различают два вида электрических токов – токи проводимости и конвекционные токи.

ЭЛЕКТРОМАГНЕТИЗМ

14.(Магнитное поле. Постоянные магниты и магнитное поле тока)

Магнитное поле - силовое поле , действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля .

Постоянные магниты имеют два полюса, названные северным и южным магнитными полями. Между этими полюсами магнитное поле располагается в виде замкнутых линий, направленных от северного полюса к южному. Магнитное поле постоянного магнита действует на металлические предметы и другие магниты.

Если поднести два магнита друг к другу одноименными полюсами, то они будут отталкиваться друг от друга. А если разноименными, то притягиваться. Магнитные линии разноименных зарядов при этом как бы замкнутся друг на друге.

Если же в поле магнита попадает металлический предмет, то магнит намагничивает его, и металлический предмет сам становится магнитом. Он притягивается своим противоположным полюсом к магниту, поэтому металлические тела как бы «прилипают» к магнитам.

Магнитное поле создается вокруг электрических зарядов при их движении. Так как движение электрических зарядов представляет собой электрический ток, то вокруг всякого про­водника с током всегда существует магнитное поле тока .

15.(Взаимодействие проводников с током. Сила Ампера)

Направление силы Ампера определяется по правилу левой руки:если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Опыты Ньютона

Опыт по разложению белого света в спектр:

Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму.
Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр.

КВАНТОВАЯ ОПТИКА.

Волновые и корпускулярные свойства света. Гипотеза Планка о квантах. Фотон.

И. Ньютон придерживался так называемой корпускулярной теории света , согласно которой свет – это поток частиц, идущих от источника во все стороны (перенос вещества).
На основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться.

Волновая же теория это легко объясняла. Волны, например на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния.

Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.

ипотеза Планка - является предположением того, что атомы испускают электромагнитную энергию (свет) отдельными порциями - квантами, а не непрерывно.

Энергия каждой порции является пропорциональной частоте излучения:

где h = 6,63 10 -34 Дж с - является постоянной Планка ,

v - является частотой света.

Фотон (γ ) - является элементарной частицей, квантом электромагнитного излучения.

Испуская и поглощая свет, ведет себя на подобии потока частиц с энергией, которая зависит от частоты v :

E = hv ,

где h - является постояннойПланка .

Энергию фотона зачастую выражают через циклическую частоту ω = 2kv , используя вместо h величину ћ (читается как «аш с чертой»), которая равна ћ = h/2π . Значит, энергию фотона можно выразить так:

Е = hv= ћω.

Исходя из теории относительности, энергия связана с массой соотношением Е = mс 2 . Так как энергия фотона равняется hv , значит, его релятивистская масса m p равняется:

Атомная и ядерная физика

33)Строение атома: планетарная модель и модель Бора. Квантовые постулаты Бора .

Поглощение и испускание света атомом. Квантование энергии.

Атомная и ядерная физика - раздел физики, изучающий строение атома и атомного ядра и процессы, связанные с ними.

Постулаты Бора: 1.Атом может находиться в особых квантовых стационарных состояниях, каждому из которых соответствует своя определенная энергия. В этих состояниях атом не излучает (и не поглощает) энергию.

два постулата.

  • 1. Атом может находиться только в особых, стационарных состояниях. Каждому состоянию соответствует определённое значение энергии - энергетический уровень. Находясь в стационарном состоянии, атом не излучает и не поглощает

Стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны. Номера стационарных орбит и энергетических уровней (начиная с первого) в общем случае обозначаются латинскими буквами: п, k и т. д. Радиусы орбит, как и энергии стационарных состояний, могут принимать не любые, а определённые дискретные значения. Первая орбита расположена ближе всех к ядру.

  • 2. Излучение света происходит при переходе атома из стационарного состояния с большей энергией Е к в стационарное состояние с меньшей энергией Е n

Согласно закону сохранения энергии, энергия излучённого фотона равна разности энергий стационарных состояний:

hv = E k - E n .

Из этого уравнения следует, что атом может излучать свет только с частотами

Атом может также поглощать фотоны. При поглощении фотона атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией.Состояние атома, в котором все электроны находятся на стационарных орбитах с наименьшей возможной энергией, называется основным. Все другие состояния атома называются возбуждёнными.У атомов каждого химического элемента имеется свой характерный набор энергетических уровней. Поэтому переходу с более высокого энергетического уровня на более низкий будут соответствовать характерные линии в спектре испускания, отличные от линий в спектре другого элемента.Совпадение линий излучения и поглощения в спектрах атомов данного химического элемента объясняется тем, что частоты волн, соответствующих этим линиям в спектре, определяются одними и теми же энергетическими уровнями. Поэтому атомы могут поглощать свет только тех частот, которые они способны излучать.

Некоторые физические величины, относящиеся к микрообъектам, изменяются не непрерывно, а скачкообразно. О величинах, которые могут принимать только вполне определенные, то есть дискретные значения (латинское "дискретус" означает разделенный, прерывистый), говорят, что они квантуются.Электромагнитное излучение испускается в виде отдельных порций - квантов - энергии. Значение одного кванта энергии равно

ΔE = h ν,

где ΔE - энергия кванта, Дж; ν - частота, с-1; h - постоянная Планка (одна из фундаментальных постоянных природы), равная 6,626·10−34 Дж·с.
Кванты энергии впоследствии назвали фотонами .Идея о квантовании энергии позволила объяснить происхождение линейчатых атомных спектров, состоящих из набора линий, объединенных в серии.
водорода.

Бета-излучение

Бета-излучение - это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение

Гамма-излучение - это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Радиоактивный распад происходит в соответствии с так называемыми правилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения;

для a-распада

, (256.4)

для b-распада

, (256.5)

где – материнское ядро, Y – символ дочернего ядра, – ядро гелия (a-частица), – символическое обозначение электрона (заряд его равен –1, а массовое число – нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах, – сохранения электрическою заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.

Электростатика

Взаимодействия заряженных тел. Электрический заряд. Закон сохранения электрического заряда.

То, что мы имели воз­мож­ность про­на­блю­дать на опыте с при­тя­же­ни­ем бу­ма­жек к на­элек­три­зо­ван­ной па­лоч­ке, до­ка­зы­ва­ет на­ли­чие сил элек­три­че­ско­го вза­и­мо­дей­ствия, а ве­ли­чи­ну этих сил ха­рак­те­ри­зу­ет такое по­ня­тие, как заряд. То, что силы элек­три­че­ско­го вза­и­мо­дей­ствия могут быть раз­лич­ны­ми, легко про­ве­ря­ет­ся экс­пе­ри­мен­таль­ным путем, на­при­мер, при на­ти­ра­нии одной и той же па­лоч­ки с раз­лич­ной ин­тен­сив­но­стью.Элек­три­че­ский заряд – фи­зи­че­ская ве­ли­чи­на, ко­то­рая ха­рак­те­ри­зу­ет ве­ли­чи­ну вза­и­мо­дей­ствия за­ря­жен­ных тел. закон со­хра­не­ния элек­три­че­ско­го за­ря­да: в элек­три­че­ски за­мкну­той си­сте­ме ал­геб­ра­и­че­ская сумма за­ря­дов неиз­мен­на. Элек­три­че­ски за­мкну­тая си­сте­ма – это мо­дель. Это такая си­сте­ма, ко­то­рую не по­ки­да­ют и не по­пол­ня­ют элек­три­че­ские за­ря­ды.
История: Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Опыты Фарадея, произведенные ещё в первую половину тридцатых годов XIX века, должны были повлечь за собой коренное изменение в основных положениях учения об электрических явлениях. Эти опыты указали, что то, что считалось совершенно пассивно относящимся к электричеству, а именно, изолирующие вещества или, как их назвал Фарадей, диэлектрики, имеет определяющее значение во всех электрических процессах и, в частности, в самой электризации проводников. Эти опыты обнаружили, что вещество изолирующего слоя между двумя поверхностями конденсатора играет важную роль в величине электроёмкости этого конденсатора.

Опыты с электролитами: 1. Если взять раствор медного купороса, собрать электрическую цепь и опустить электроды (графитовые стержни от карандаша) в раствор, то лампочка загориться. Есть ток!
Повторите опыт, заменив электрод, соединенный с минусом батарейки на алюминиевую пуговицу. Через какое-то время она станет «золотой», т.е. покроется слоем меди. Это – явление гальваностегии.

2. Нам понадобятся: стакан с крепким раствором поваренной соли, батарейка от карманного фонарика,
два кусочка медной проволоки длиной примерно 10 см. Зачистите концы проволоки мелкой наждачной шкуркой. Подсоедините к каждому полюсу батарейки по одному концу проволочек. Свободные концы проволочек опустите в стакан с раствором. Вблизи опущенных концов проволоки поднимаются пузырьки!

Закон Кулона

Закон Ку­ло­на : сила вза­и­мо­дей­ствия двух за­ря­жен­ных тел (сила Ку­ло­на или Ку­ло­но­ва сила) прямо про­пор­ци­о­наль­на про­из­ве­де­нию мо­ду­лей их за­ря­дов и об­рат­но про­пор­ци­о­наль­на квад­ра­ту рас­сто­я­ния между за­ря­да­ми.

В даль­ней­шем закон при­об­рёл сле­ду­ю­щий свой окон­ча­тель­ный вид:

История: Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752-1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил , что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества» отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «сила электрического притяжения подчиняется тем же законам, что и сила тяжести, а следовательно, зависит от квадрата расстояния между зарядами» . Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785) .

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Крутильные весы:Крутильные весы - физический прибор, предназначенный для измерения малых сил или моментов сил. Были изобретены Шарлем Кулоном в 1777 году (по другим данным, в 1784) для изучения взаимодействия точечных электрических зарядов и магнитных полюсов. В простейшем варианте прибор состоит из вертикальной нити, на которой подвешен лёгкий уравновешенный рычаг.

Электрическое поле

1 Электрический заряд

Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление жидкости и газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий. Столь же фундаментальным типом взаимодействия является тяготение - гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.

1.Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд).

2.Гравитационное взаимодействие - это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.

3.Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в 10 42 раз превышает силу их гравитационного притяжения друг к другу.

Каждое заряженное тело обладает некоторой величиной электрического заряда q. Электрический заряд - это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы. Единицей измерения заряда является кулон (Кл).

1.1 Два вида заряда

Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия - притяжение и отталкивание - удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные.

Заряды разных знаков притягиваются друг к другу, а заряды одного знака друг от друга отталкиваются. Это проиллюстрировано на рис. 1; подвешенным на нитях шарикам со- общены заряды того или иного знака.

Рис. 1. Взаимодействие двух видов зарядов

Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны. Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих (Единица измерения заряда определяется через единицу измерения силы тока. 1 Кл - это заряд, проходящий через поперечное сечение проводника за 1 с при силе тока в 1 А. ) тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации) тело немедленно начинает действовать на окружающие заряженные частицы.

Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

Заряд протона равен 1,6 · 10 −19 Кл. Заряд электрона противоположен ему по знаку и равен −1,6 · 10 −19 Кл. Величина e = 1,6 · 10 −19 Кл называется элементарным зарядом . Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

Заряд любого тела q всегда складывается из целого количества элементарных зарядов: q = ± Ne. Если q < 0, то тело имеет избыточное количество N электронов (по сравнению с количеством протонов). Если же q > 0, то, наоборот, у тела электронов недостаёт: протонов на N больше.

1.2 Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация - это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело - сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк - отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть - положительно.

Данный способ электризации тел называется электризацией трением. С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову.

Другой тип электризации называется электростатической индукцией , или электризацией через влияние . В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других - отрицательные.

Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2. На некотором расстоянии от металлического тела находится положительный заряд q. Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая - положительно. Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3.

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются некомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.

Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней - положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд - хорошо известная вам молния.

1.3 Закон сохранения заряда

Вернемся, к примеру, электризации трением - натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

Мы видим здесь закон сохранения заряда, который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами:

q1 + q2 + . . . + qn = const.

Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки - столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется! Например, на рис. 5 показан процесс γ → e − + e +, при котором порция электромагнитного излучения γ (так называемый фотон) превращается в две заряженные частицы - электрон e − и позитрон e +. Такой процесс оказывается возможным при некоторых условиях - например, в электрическом поле атомного ядра.

Рис. 5. Рождение пары электрон–позитрон

Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.

Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.

2 Закон Кулона

Взаимодействие неподвижных (в данной инерциальной системе отсчёта) зарядов называется электростатическим . Оно наиболее просто для изучения.

Раздел электродинамики, в котором изучается взаимодействие неподвижных зарядов, называется электростатикой. Основной закон электростатики - это закон Кулона.

По внешнему виду закон Кулона удивительно похож на закон всемирного тяготения, который устанавливает характер гравитационного взаимодействия точечных масс. Закон Кулона является законом электростатического взаимодействия точечных зарядов.

Точечный заряд - это заряженное тело, размеры которого много меньше других размеров, характерных для данной задачи. В частности, размеры точечных зарядов пренебрежимо малы по сравнению с расстояниями между ними.

Точечный заряд - такая же идеализация, как материальная точка, точечная масса и т. д. В случае точечных зарядов мы можем однозначно говорить о расстоянии между ними, не задумываясь о том, между какими именно точками заряженных тел это расстояние измеряется.

Закон Кулона. Сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению абсолютных величин зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила называется кулоновской . Вектор кулоновской силы всегда лежит на прямой, которая соединяет взаимодействующие заряды. Для кулоновской силы справедлив третий закон Ньютона: заряды действуют друг на друга с силами, равными по модулю и противоположными по направлению.

В качестве примера на рис. 6 показаны силы F1 и F2, с которыми взаимодействуют два отрицательных заряда.

Рис. 6. Кулоновская сила

Если заряды, равные по модулю q1 и q2, находятся на расстоянии r друг от друга, то они взаимодействуют с силой

Коэффициент пропорциональности k в системе СИ равен:

k = 9 · 10 9 Н · м 2 /Кл 2 .

Если сравнивать с законом всемирного тяготения, то роль точечных масс в законе Кулона играют точечные заряды, а вместо гравитационной постоянной G стоит коэффициент k. Математически формулы этих законов устроены одинаково. Важное физическое отличие заключается в том, что гравитационное взаимодействие всегда является притяжением, а взаимодействие зарядов может быть как притяжением, так и отталкиванием.

Так уж вышло, что наряду с константой k имеется ещё одна фундаментальная константа ε 0 , связанная с k соотношением

Константа ε 0 называется электрической постоянной. Она равна:

ε 0 = 1/4πk = 8,85 · 10 −12 Кл 2 /Н · м 2 .

Закон Кулона с электрической постоянной выглядит так:

Опыт показывает, что выполнен так называемый принцип суперпозиции. Он состоит из двух утверждений:

  1. Кулоновская сила взаимодействия двух зарядов не зависит от присутствия других заряженных тел.
  2. Предположим, что заряд q взаимодействует с системой зарядов q1, q2, . . . , qn. Если каждый из зарядов системы действует на заряд q с силой F1, F2, . . . , Fn соответственно, то результирующая сила F, приложенная к заряду q со стороны данной системы, равна векторной сумме отдельных сил:

F = F1 + F2 + . . . + Fn

Принцип суперпозиции проиллюстрирован на рис. 7. Здесь положительный заряд q взаимодействует с двумя зарядами: положительным зарядом q1 и отрицательным зарядом q2.

Рис. 7. Принцип суперпозиции

Принцип суперпозиции позволяет прийти к одному важному утверждению.

Вы помните, что закон всемирного тяготения справедлив на самом деле не только для точечных масс, но и для шаров со сферически-симметричным распределением массы (в частности, для шара и точечной массы); тогда r - расстояние между центрами шаров (от точечной массы до центра шара). Этот факт вытекает из математической формы закона всемирного тяготения и принципа суперпозиции.

Поскольку формула закона Кулона имеет ту же структуру, что и закон всемирного тяготения, и для кулоновской силы также выполнен принцип суперпозиции, мы можем сделать аналогичный вывод: по закону Кулона будут взаимодействовать два заряженных шара (точечный заряд с шаром) при условии, что шары имеют сферически-симметричное распределение заряда; величина r в таком случае будет расстоянием между центрами шаров (от точечного заряда до шара).

Значимость данного факта мы увидим совсем скоро; в частности, именно поэтому напряжённость поля заряженного шара окажется вне шара такой же, как и у точечного заряда. Но в электростатике, в отличие от гравитации, с этим фактом надо быть осторожным. Например, при сближении положительно заряженных металлических шаров сферическая симметрия нарушится: положительные заряды, взаимно отталкиваясь, будут стремиться к наиболее удалённым друг от друга участкам шаров (центры положительных зарядов будут находиться дальше друг от друга, чем центры шаров). Поэтому сила отталкивания шаров в данном случае будет меньше того значения, которое получится из закона Кулона при подстановке вместо r расстояния между центрами.

2.2 Закон Кулона в диэлектрике

Отличие электростатического взаимодействия от гравитационного состоит не только в наличии сил отталкивания. Сила взаимодействия зарядов зависит от среды, в которой заряды находятся (а сила всемирного тяготения от свойств среды не зависит). Диэлектриками , или изоляторами называются вещества, которые не проводят электрический ток.

Оказывается, что диэлектрик уменьшает силу взаимодействия зарядов (по сравнению с вакуумом). Более того, на каком бы расстоянии друг от друга заряды ни находились, сила их взаимодействия в данном однородном диэлектрике всегда будет в одно и то же число раз меньше, чем на таком же расстоянии в вакууме. Это число обозначается ε и называется диэлектрической проницаемостью диэлектрика. Диэлектрическая проницаемость зависит только от вещества диэлектрика, но не от его формы или размеров. Она является безразмерной величиной и может быть найдена из таблиц. Таким образом, в диэлектрике формулы (1) и (2) приобретают вид:

Диэлектрическая проницаемость вакуума, как видим, равна единице. Во всех остальных случаях диэлектрическая проницаемость больше единицы. Диэлектрическая проницаемость воздуха настолько близка к единице, что при расчёте сил взаимодействия зарядов в воздухе пользуются формулами (1) и (2) для вакуума.

Электрический заряд — физическая величина, определяющая интенсивность электромагнитных взаимодействий .

Носителями отрицательных зарядов в атоме являются электроны, носителями положительных зарядов — протоны.

Все тела в обычном состоянии не заряжены. Чтобы тело получило заряд, его нужно наэлектризовать: отделить отрицательный заряд от связанного с ним положительного. Простейший способ электризации – трение.

При электризации тел трением происходит перераспределение имеющихся электронов между нейтральными, в первый момент телами, т.е в теле возникает избыток или недостаток электронов. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

При электризации тел выполняется закон сохранения электрического заряда. Он справедлив для изолированной системы . В изолированной системе алгебраическая сумма зарядов всех частиц сохраняется:

В природе существует только два вида электрических зарядов: положительные и отрицательные. Одноимённые заряды отталкиваются, разноимённые – притягиваются:

Взаимодействие между заряженными частицами называется электромагнитным .

Неподвижные точечные электрические заряды q 1 и q 2 взаимодействуют в вакууме согласно закону Кулона с силой где коэффициент , q — заряд выражается в кулонах (Кл), r — расстояние между заряженными телами (м).

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними. Это основной закон электростатики Шарлем Кулоном был экспериментально установлен в 1785 г. и носит его имя.

Существует минимальный заряд, называемый элементарным , которым обладают все заряженные элементарные частицы:

Взаимодействие зарядов осуществляется посредством электрического поля. Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля :

  • порождается электрическим зарядом;
  • обнаруживается по действию на ток;
  • действует на заряды с некоторой силой.

Напряженность поля определяет силу, действующую на заряд:

Напряженность — силовая характеристика электрического поля. .

Напряженность — векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда. , Напряженность не зависит от величины заряда, помещенного в поле. , если q>0 . , если q<0 . Т.е. вектор напряженности направлен от положительного заряда и к отрицательному.

Похожие статьи

  • Гадание на любовь и отношения онлайн

    3.1 В поисках любви Данный расклад позволит вам взглянуть на личность человека, которому суждено принести в вашу жизнь любовь: какими качествами он или она будет обладать, в какой области будут сосредоточены его/ее профессиональные...

  • Гадание на будущее — узнайте свою судьбу используя обычные карты (расклады)

    Игральные карты – одна из древнейших предсказательных систем, которыми и сегодня пользуются очень многие. Такая колода проще, чем колода Таро, однако, гадание на игральных картах не менее интересно и очень результативно. На них гадают и на...

  • Витамин д для тестостерона

    Витамины для повышения тестостерона для мужчин помогают поднять уровень полового гормона и повысить шансы на успешное зачатие. Для чего именно нужно повышение тестостерона? Как поднять уровень полового гормона тестостерона у мужчин быстро...

  • Детский и подростковый негативизм

    4 3 232 0 Понятие негативизма очень широкое. Чаще всего о нем говорят в рамках темы детей и подростков. Но этот симптом проявляется при всевозрастных проблемах: кризисах, депрессиях, психических расстройствах. Им часто страдают...

  • Случайная половая связь: последствия, профилактика

    Интимные отношения, при которых не используются барьерные средства контрацепции, рано или поздно могут привести к незапланированной беременности. Что нужно делать, когда сексуальный контакт произошел без презерватива? Существует несколько...

  • Суффиксы деепричастий Какие суффиксы у причастий и деепричастий

    Среди часто используемых, но плохо узнаваемых частей речи почетное место занимает деепричастие. Одни лингвисты считают их самостоятельной частью речи, другие - особой формой глагола. Как бы то ни было, отличать деепричастия полезно, ведь...