Теория бройля. Соотношение де бройля

Выросший в утонченной и привилегированной среде французской аристократии, Б. еще до поступления в лицей Жансон-де-Сайи в Париже был увлечен различными науками. Особый интерес в нем вызывала история, изучением которой Б. занялся на факультете искусств и литературы Парижского университета, где он в 1910 г. получил степень бакалавра. Не без влияния старшего брата Мориса Б. все больше увлекался физикой и, по его собственным словам, «философией, обобщениями и книгами [Анри] Пуанкаре», знаменитого французского математика. После периода интенсивных занятий он в 1913 г. получил ученую степень по физике на факультете естественных наук Парижского университета.

В тот же год Б. был призван на военную службу и зачислен во французский инженерный корпус. После начала в 1914 г. первой мировой войны он служил в радиотелеграфном дивизионе и провел большую часть военных лет на станции беспроволочного телеграфа при Эйфелевой башне. Через год после окончания войны Б. возобновил свои занятия физикой в частной научно-исследовательской лаборатории своего брата. Он изучал поведение электронов, атомов и рентгеновских лучей.

Это было увлекательное время для физиков, когда загадки возникали буквально на каждом шагу. В XIX в. классическая физика достигла столь больших успехов, что некоторые ученые начали сомневаться, остались ли нерешенными хотя бы какие-то принципиальные научные проблемы. И лишь в самые последние годы столетия были сделаны такие поразительные открытия, как рентгеновское излучение, радиоактивность и электрон. В 1900 г. Макс Планк предложил свою революционную квантовую теорию для объяснения соотношения между температурой тела и испускаемым им излучением. Вопреки освященному веками представлению о том, что свет распространяется непрерывными волнами, Планк высказал предположение о том, что электромагнитное излучение (всего лишь за несколько десятилетий до этого было доказано, что свет представляет собой электромагнитное излучение) состоит из неделимых порций, энергия которых пропорциональна частоте излучения. Новая теория позволила Планку разрешить проблему, над которой он работал, но она оказалась слишком непривычной, чтобы стать общепринятой. В 1905 г. Альберт Эйнштейн показал, что теория Планка – не математический трюк. Используя квантовую теорию, он предложил замечательное объяснение фотоэлектрического эффекта (испускание электронов поверхностью металла под действием падающего на нее излучения). Было известно, что с увеличением интенсивности излучения число испущенных с поверхности электронов возрастает, но их скорость никогда не превосходит некоторого максимума. Согласно предложенному Эйнштейном объяснению, каждый квант передает свою энергию одному электрону, вырывая его с поверхности металла: чем интенсивнее излучение, тем больше фотонов, которые высвобождают больше электронов; энергия же каждого фотона определяется его частотой и задает предел скорости вылета электрона. Заслуга Эйнштейна не только в том, что он расширил область применения квантовой теории, но и в подтверждении им ее справедливости. Свет, несомненно обладающий волновыми свойствами, в ряде явлений проявляет себя как частицы.

Новое подтверждение квантовой теории последовало в 1913 г., когда Нильс Бор предложил модель атома, которая соединила концепцию Эрнста Резерфорда о плотном центральном ядре, вокруг которого обращаются электроны, с определенными ограничениями на электронные орбиты. Эти ограничения позволили Бору объяснить линейчатые спектры атомов, которые можно наблюдать, если свет, испущенный веществом, находящимся в возбужденном состоянии при горении или электрическом разряде, пропустить через узкую щель, а затем через спектроскоп – оптический прибор, пространственно разделяющий компоненты сигнала, соответствующие различным частотам или длинам волн (различным цветам). В результате возникает серия линий (изображений щели), или спектр. Положение каждой спектральной линии зависит от частоты определенной компоненты. Спектр целиком определяется излучением атомов или молекул светящегося вещества. Бор объяснял возникновение спектральных линий «перескоком» электронов в атомах с одной «разрешенной» орбиты на другую, с более низкой энергией. Разность энергий между орбитами, теряемая электроном при переходе, испускается в виде кванта, или фотона – излучения с частотой, пропорциональной разности энергий. Спектр представляет собой своего рода кодированную запись энергетических состояний электронов. Модель Бора, таким образом, подкрепила и концепцию дуальной природы света как волны и потока частиц.

Несмотря на большое число экспериментальных подтверждений, мысль о двойственном характере электромагнитного излучения у многих физиков продолжала вызывать сомнения. К тому же в новой теории обнаружились уязвимые места. Например, модель Бора «разрешенные» электронные орбиты ставила в соответствии наблюдаемым спектральным линиям. Орбиты не следовали из теории, а подгонялись, исходя из экспериментальных данных.

Б. первым понял, что если волны могут вести себя как частицы, то и частицы могут вести себя как волны. Он применил теорию Эйнштейна – Бора о дуализме волна-частица к материальным объектам. Волна и материя считались совершенно различными. Материя обладает массой покоя. Она может покоиться или двигаться с какой-либо скоростью. Свет же не имеет массы покоя: он либо движется с определенной скоростью (которая может изменяться в зависимости от среды), либо не существует. По аналогии с соотношением между длиной волны света и энергией фотона Б. высказал гипотезу о существовании соотношения между длиной волны и импульсом частицы (массы, умноженной на скорость частицы). Импульс непосредственно связан с кинетической энергией. Таким образом, быстрый электрон соответствует волне с более высокой частотой (более короткой длиной волны), чем медленный электрон. В каком обличье (волны или частицы) проявляет себя материальный объект зависит от условий наблюдения.

С необычайной смелостью Б. применил свою идею к модели атома Бора. Отрицательный электрон притягивается к положительно заряженному ядру. Для того чтобы обращаться вокруг ядра на определенном расстоянии, электрон должен двигаться с определенной скоростью. Если скорость электрона изменяется, то изменяется и положение орбиты. В таком случае центробежная сила уравновешивается центростремительной. Скорость электрона на определенной орбите, находящейся на определенном расстоянии от ядра, соответствует определенному импульсу (скорости, умноженной на массу электрона) и, следовательно, по гипотезе Б., определенной длине волны электрона. По утверждению Б., «разрешенные» орбиты отличаются тем, что на них укладывается целое число длин волн электрона. Только на таких орбитах волны электронов находятся в фазе (в определенной точке частотного цикла) с самими собой и не разрушаются собственной интерференцией.

В 1924 г. Б. представил свою работу «Исследования по квантовой теории» («Researches on the Quantum Theory») в качестве докторской диссертации факультету естественных наук Парижского университета. Его оппоненты и члены ученого совета были поражены, но настроены весьма скептически. Они рассматривали идеи Б. как теоретические измышления, лишенные экспериментальной основы. Однако по настоянию Эйнштейна докторская степень Б. все же была присуждена. В следующем году Б. опубликовал свою работу в виде обширной статьи, которая была встречена с почтительным вниманием. С 1926 г. он стал лектором по физике Парижского университета, а через два года был назначен профессором теоретической физики Института Анри Пуанкаре при том же университете.

Лучшие дня

На Эйнштейна работа Б. произвела большое впечатление, и он советовал многим физикам тщательно изучить ее. Эрвин Шредингер последовал совету Эйнштейна и положил идеи Б. в основу волновой механики, обобщившей квантовую теорию. В 1927 г. волновое поведение материи получило экспериментальное подтверждение в исследованиях Клинтона Дж. Дэвиссона и Лестера Х. Джермера, работавших с низкоэнергетическими электронами в Соединенных Штатах, и Джорджа П. Томсона, использовавшего электроны большой энергии в Англии. Открытие связанных с электронами волн, которые можно отклонять в нужную сторону и фокусировать, привело в 1933 г. к созданию Эрнстом Руской электронного микроскопа. Волны, связанные с материальными частицами, теперь принято называть волнами де Бройля.

В 1929 г. «за открытие волновой природы электронов» Б. был удостоен Нобелевской премии по физике. Представляя лауреата на церемонии награждения, член Шведской королевской академии наук К.В. Озеен заметил: «Исходя из предположения о том, что свет есть одновременно и волновое движение, и поток корпускул [частиц], Б. открыл совершенно новый аспект природы материи, о котором ранее никто не подозревал... Блестящая догадка Б. разрешила давний спор, установив, что не существует двух миров, один – света и волн, другой – материи и корпускул. Есть только один общий мир».

Б. продолжил свои исследования природы электронов и фотонов. Вместе с Эйнштейном и Шредингером он в течение многих лет пытался найти такую формулировку квантовой механики, которая подчинялась бы обычным причинно-следственным законам. Однако усилия этих выдающихся ученых не увенчались успехом, а экспериментально было доказано, что такие теории неверны. В квантовой механике возобладала статистическая интерпретация, основанная на работах Нильса Бора, Макса Борна и Вернера Гейзенберга. Эту концепцию часто называют копенгагенской интерпретацией в честь Бора, который разрабатывал ее в Копенгагене.

В 1933 г. Б. был избран членом Французской академии наук, а в 1942 г. стал ее постоянным секретарем. В следующем году он основал Центр исследований по прикладной математике при Институте Анри Пуанкаре для укрепления связей между физикой и прикладной математикой. В 1945 г., после окончания второй мировой войны, Б. и его брат Морис были назначены советниками при французской Высшей комиссии по атомной энергии.

Б. никогда не состоял в браке. Он любил совершать пешие прогулки, читать, предаваться размышлениям и играть в шахматы. После смерти своего брата в 1960 г. он унаследовал герцогский титул. Б. скончался в парижской больнице 19 марта 1987 г. в возрасте 94 лет.

Помимо Нобелевской премии, Б. был награжден первой медалью Анри Пуанкаре Французской академии наук (1929), Гран-при Альберта I Монакского (1932), первой премией Калинги ЮНЕСКО (1952) и Гран-при Общества инженеров Франции (1953). Он был обладателем почетных степеней многих университетов и членом многих научных организаций, в том числе Лондонского королевского общества, американской Национальной академии наук и Американской академии наук и искусств. В 1945 г. он был выдвинут в состав Французской академии братом Морисом в знак признания его литературных достижений.

Французский физик, лауреат Нобелевской премии (1929 г.), один из создателей квантовой механики, автор идеи о волновых свойствах материи (волны де Бройля). Автор работ по релятивистской квантовой механике, строению ядра, распространению волн в волноводах.

94. «Несмотря на некоторую произвольность деления непрерывного исторического процесса на четко ограниченные отрезки, в истории науки, однако, можно выделить более или менее длительные периоды, во время которых, несмотря на непрекращающийся прогресс науки, основные тенденции науки, а также используемые ею теоретические представления остаются примерно одними и теми же. Эти эпохи относительной стабильности отделены друг от друга краткими периодами кризисов, во время которых под давлением фактов, ранее мало известных или вовсе неизвестных, ученые вдруг ставят под сомнение все принципы, казавшиеся до этого вполне незыблемыми, и через несколько лет находят совершенно новые пути. Такие неожиданные перевороты всегда характеризуют решающие этапы в прогрессивном развитии наших знаний».

[20 , 9].

95. «По-видимому, уже давно существует согласие по поводу роли, которую играют эксперимент и теория в естественных науках. Эксперимент, неотъемлемая основа любого прогресса этих наук, эксперимент, из которого мы всегда исходим и к которому мы всегда возвращаемся, – лишь он один может служить нам источником знаний о реальных фактах, которые стоят выше любой теоретической концепции, любой предвзятой идеи. Но эксперимент не должен сводиться к простому, пассивному наблюдению. Он должен всякий раз, когда это возможно, активно вмешиваться в реальность, изменяя условия возникновения явлений, вопрошая природу строго определенным образом, так, чтобы видеть, каков будет ее ответ. Что касается теории, то ее задача состоит в классификации и синтезе полученных результатов, расположении их в разумную систему, которая не только позволяет истолковывать известное, но также по мере возможности предвидеть еще неизвестное». [20 , 162].

97 . «Когда физическая теория добивается получения связного математического представления об известных явлениях, она стремится к тому, чтобы предсказать новые явления. Иногда эти предсказания подтверждаются дальнейшими экспериментальными исследованиями и теория, выдержав, таким образом, испытание, укрепляется. Иногда – и можно сказать, что с течением времени это всегда в конце концов происходит, ─ либо эксперимент не подтверждает одного из предсказаний теории, либо вдруг в ходе эксперимента обнаруживается зачастую, независимо от воли исследователей, новый факт, который не согласуется с теорией. Тогда нужно доделать или переделать воздвигнутое ранее здание теории. Но, и это существенно, такая переделка, поскольку она всегда должна производиться с учетом всех накопленных ранее фактов, должна быть осуществлена так, чтобы включить тем или иным образом, и зачастую в качестве первого приближения, в новую теорию предыдущую теорию и всю совокупность уравнений, на которых она зиждется, хотя их истолкование может измениться. Таким образом, новая теория должна признать все точные предсказания старой теории, но, отличаясь от нее в некоторых пунктах, она должна строго предвидеть наблюдаемые факты, в том числе и те, которые старая теория не в состоянии предвидеть. Путем таких последовательных включений развивается теоретическая физика; не отрицая ни одного из своих предыдущих успехов, она охватывает все время изменяющимся и расширяющимся синтезом возрастающее число экспериментальных фактов».


[20 , 163 – 164].

98. «Данные наших чувств могут служить для построения научной теории лишь после того, как они будут нами соответствующим образом истолкованы, а в это истолкование обязательно вмешиваются некоторые представления нашего ума, то есть теоретические идеи. А это говорит о том, что нельзя совершенно четко отделить эксперимент от теории и считать, что экспериментальный факт является данным, не зависящим от любого истолкования. Соотношение между экспериментом и теорией является более тонким и более сложным: экспериментальные наблюдения получают научное значение только после определенной работы нашего ума, который, каким бы он ни был быстрым и гибким, всегда накладывает на сырой факт отпечаток наших стремлений и наших представлений». [20 , 165].

99 . «Дедуктивное рассуждение исходит из априорных представлений и постулатов и пытается извлечь из них с помощью логических правил, которым подчиняется наше мышление, следствия; эти следствия затем можно сопоставить с фактами. Математический язык предоставляет в распоряжение дедукции точный инструмент, в котором она нуждается для совершения, по возможности безошибочного, перехода от посылок к выводам. Исходя в начале рассуждения из абстрактных формул, в которых физические величины представлены символами, ученый, использующий дедуктивное рассуждение, преобразует по правилам логики свои уравнения и приходит к окончательным соотношениям, которые он хочет проверить. Тогда он должен заменить символы цифрами, для того чтобы получить численные результаты, которые можно сравнить с экспериментом; рассуждение уступает место расчету. Такова схема дедуктивного рассуждения в том виде, в каком оно используется во всех науках, достаточно точных, достаточно разработанных для того, чтобы в них можно было применять математический аппарат…

Индуктивное рассуждение значительно сложнее для определения и анализа. Опираясь на аналогию и интуицию, взывая скорее к уму проницательному, чем к уму, так сказать, геометрическому, оно стремится угадать то, что еще не известно, так, чтобы установить новые принципы, которые могут служить основой для новых дедукций. Отсюда видно, насколько индуктивное рассуждение смелее и рискованнее, чем дедуктивное рассуждение; дедукция – это безопасность, по крайней мере, с первого взгляда; индукция – это риск. Но риск – необходимое условие любого подвига, и поэтому индукция, поскольку она стремится избежать уже проторенных путей, поскольку она неустрашимо пытается раздвинуть уже существующие границы мысли, является истинным источником действительно научного прогресса.

Сила строгой дедукции в том, что она может идти почти абсолютно уверенно и точно по прямой дороге; но слабость ее состоит в том, что, исходя из совокупности постулатов, рассматриваемых ею как несомненные, она может извлечь из них лишь то, что в них уже содержится. В завершенной науке, основные принципы которой были бы полными и определенными, дедукция была бы единственно приемлемым методом. Но в неполной, еще создающейся и развивающейся науке, какой по необходимости является человеческая наука, дедукция может служить лишь для проверки и применений, конечно, очень важных, но не открывающих действительно новых глав науки. Великие открытия, скачки научной мысли вперед создаются индукцией, рискованным, но истинно творческим методом. Новые эры в науке всегда начинались с изменений, вносимых в представления и постулаты, ранее служившие основой для дедуктивного рассуждения.

Из этого, конечно, не нужно делать вывод о том, что строгость дедуктивного рассуждения не имеет никакой ценности. На самом деле лишь она мешает воображению впасть в заблуждение, лишь она позволяет после установления индукцией новых исходных пунктов вывести следствия и сопоставить выводы с фактами. Лишь одна дедукция может обеспечить проверку гипотез и служить ценным противоядием против не в меру разыгравшейся фантазии. Но, захваченная в плен своей же строгостью, дедукция не может выйти из рамок, в которые она с самого начала заключена, и, следовательно, она не может дать ничего существенно нового». [20 , 177-179].

100. «…почему при изложении научных теорий, не считая, может быть, области чистой математики, метод, называемый «аксиоматическим», удовлетворителен для нашего ума и в то же время менее плодотворен практически. Многие видные умы, особенно восприимчивые к логической красоте способа изложения, предпринимали большие усилия, чтобы изложить надежно установленные физические теории в аксиоматической форме. Разумеется, подобные усилия не являются бесполезными; они позволяют в значительной степени уточнить исходные представления и постулаты, лучше обнажить весь формальный костяк теории и строже определить область ее применения и смысл следствий, который можно из нее извлечь. Вся беда, однако, заключается в том, что не успевает завершиться работа, зачастую длительная и кропотливая, по аксиоматизации науки, как теория оказывается недостаточной для экспериментальных фактов и возникает необходимость расширить, а иногда и полностью пересмотреть ее основы…

Нельзя сказать, что строгие аксиоматические теории являются бесполезными, но, вообще говоря, они почти не способствуют наиболее замечательным успехам науки. И глубокая причина этого в том, что аксиоматический метод действительно стремится устранить индуктивную интуицию – единственный метод, который может помочь выйти за пределы уже известного; аксиоматический метод может быть хорошим методом классификации или преподавания, но он не является методом открытия». [20 , 179].

101 . «…Не заставит ли нас такой рост наших знаний, происходящий все возрастающими темпами, полагать, что вскоре мы раскроем все секреты физического мира? Думать так означало бы впасть в большую ошибку, так как каждый успех наших знаний ставит больше проблем, чем решает, и в этой области каждая новая открытая земля позволяет предполагать о существовании еще неизвестных нам необъятных континентов».

[20 , 181].

102. «В самом начале человечество с любопытством, вниманием и иногда с беспокойством наблюдало окружающую его природу: оно пыталось выяснить причины и связи наблюдаемых явлений. Но в начале своего развития человечество не имело ни родителей, ни учителей, которые научили бы его, и часто оно верило, что находит в мифах, иногда поэтических, но всегда обманчивых, объяснение (в действительности не имеющее большой ценности) фактов, которые оно пыталось понять. Затем через несколько веков человечество достигло юношеского возраста и освободилось от своих первоначальных заблуждений. Поскольку его любопытство могло отныне опираться на более твердый разум и на более острый критический ум, оно могло продолжать исследование явлений с помощью более надежных и более строгих методов.

Так родилась современная наука, дочь удивления и любопытства, которые всегда являются ее скрытыми движущими силами, обеспечивающими ее непрерывное развитие. Каждое открытие открывает перед нами новые горизонты, и, обозревая их, мы испытываем новое удивление и нас охватывает новое любопытство. А поскольку неизвестное всегда бесконечно расстилается перед нами, то ничто, видимо, не может прервать этого непрерывного последовательного развития, которое, удовлетворяя наше былое любопытство, сразу же возбуждает новое, в свою очередь порождающее новые открытия». [20 , 289 – 290].

103. «Когда ученый пытается понять категорию явлений, он начинает с допущения, что эти явления подчиняются законам, которые нам доступны, поскольку они понятны для нашего разума. Отметим, что это допущение не является очевидным и безусловным постулатом. В самом деле, этот постулат сводится к допущению рациональности физического мира, к признанию, что существует нечто общее между структурой материальной вселенной и законами функционирования нашего разума. На основе этой гипотезы, которую мы выдвинули, естественно не всегда сознавая всю смелость такого допущения, мы пытаемся найти разумные соотношения, которые, согласно ей, должны существовать между чувственными данными». [20 , 291].

104. «Люди, которые сами не занимаются наукой, довольно часто полагают, что науки всегда дают абсолютно достоверные положения; эти люди считают, что научные работники делают свои выводы на основе неоспоримых фактов и безупречных рассуждений и, следовательно, уверенно шагают вперед, причем исключена возможность ошибки или возврата назад. Однако состояние современной науки, так же как и история наук в прошлом, доказывает, что дело обстоит совершенно не так. Не только каждый исследователь имеет свои личные представления и свою собственную манеру подхода к проблемам, но, кроме того, очень часто ставится под вопрос ценность констатируемых фактов и, более того, их истолкование. Теории развиваются и часто даже меняются коренным образом; в этой области, так же как и во многих других, имеются «моды», уже проходящие, и «моды», еще только возникающие. Разве это было бы возможно, если бы основы науки были чисто рациональными? Это служит надежным доказательством того, что на прогресс науки влияют и иные факторы, а не только безупречная констатация или строгие силлогизмы; это имеет место даже в таких науках, которые благодаря своей строгости или мнимой простоте, например механика или физика, видимо, особенно хорошо приспособлены для использования абстрактных схем и математических рассуждений.

Действительно, в основе всех научных теорий, стремящихся предложить нам картину мира или метод предвидения явлений, имеются понятия и представления, иногда конкретные, а иногда абстрактные, к которым любой исследователь испытывает большую или меньшую симпатию и к которым он более или менее быстро приспосабливается. Это замечание наглядно свидетельствует о неизбежном влиянии на научное исследование индивидуальных особенностей, имеющих не только рациональный характер. При более внимательном исследовании этого вопроса легко заметить, что как раз эти элементы имеют важное значение для прогресса науки. Я, в частности, имею в виду такие сугубо личные способности, столь различные у разных людей, как воображение и интуиция.

Воображение, позволяющее нам представить сразу часть физического мира в виде наглядной картины, выявляющей некоторые ее детали, интуиция, неожиданно раскрывающая нам в каком-то внутреннем прозрении, не имеющем ничего общего с тяжеловесным силлогизмом, глубины реальности, являются возможностями, органически присущими человеческому уму; они играли и повседневно играют существенную роль в создании науки. Конечно, ученый рисковал бы впасть в заблуждение, если бы он в ходе своей работы переоценил значение воображения и интуиции; он в конце концов отказался бы от концепции рациональности вселенной, которая, как мы говорили, является основным постулатом науки, и постепенно возвратился бы к мифическим объяснениям, характерным для донаучной фазы человеческого мышления. Тем не менее, воображение и интуиция, используемые в разумных пределах, остаются необходимыми вспомогательными средствами ученого в его движении вперед.

Конечно, постулат о рациональности вселенной, если его принять без ограничений, привел бы к утверждению о том, что следствием применения строгой системы рассуждений к наблюдаемым фактам должно быть точное и полное описание физического мира. Но это верно лишь в идеальном случае; систему рассуждений, о которой только что шла речь, нельзя фактически построить, потому что физический мир характеризуется крайней сложностью, бросающей вызов нашему пониманию; потому что мы познаем, конечно, лишь ограниченную часть физических явлений; потому что рациональность вселенной, если она действительно полная, может быть исчерпывающе раскрыта лишь разумом, бесконечно более обширным, чем наш. Очень часто нам приходится переходить от одного рассуждения к другому посредством акта воображения или интуиции, который сам по себе не является полностью рациональным актом…

Однако нельзя недооценивать необходимой роли воображения и интуиции в научном исследовании. Разрывая с помощью иррациональных скачков…жесткий круг, в который нас заключает дедуктивное рассуждение, индукция, основанная на воображении и интуиции, позволяет осуществить великие завоевания мысли; она лежит в основе всех истинных достижений науки. И именно поэтому человеческий ум, как мне кажется, способен в конечном итоге взять верх над всеми машинами, которые вычисляют или классифицируют лучше, чем он, но не могут ни воображать, ни предчувствовать.

Таким образом (поразительное противоречие!), человеческая наука, по существу рациональная в своих основах и по своим методам, может осуществлять свои наиболее замечательные завоевания лишь путем опасных внезапных скачков ума, когда проявляются способности, освобожденные от тяжелых оков строгого рассуждения, которые называют воображением, интуицией, остроумием». [20 , 292 – 295].

105. «Философы и ученые древности были подчас прекрасными наблюдателями, особенно в астрономии, в естественной истории и медицине, но они не умели ставить и проводить экспериментальные исследования в том смысле, в каком мы их сегодня понимаем. Они занимались больше самонаблюдением и исследованием структуры рассуждения, чем строгой констатацией явлений природы, зачастую их привлекал блеск весьма общих теорий, не имеющих прямой связи с физической реальностью, и тонкая игра чисто словесных аргументов». [20 , 299].

106. «…открытие – малое или большое – является результатом интуитивной догадки, опирающейся чаще всего на аналогии и сопоставления, результатом отступления исследователя от обычного хода его рассуждений, позволяющего исследователю неожиданно увидеть тот путь, на который он должен вступить; в случае великих открытий все это называется «гениальным прозрением». [20 , 304].

107. «…прозрение, более или менее гениальное, смотря по обстоятельствам, приводящее к открытию, является результатом неосознанной работы ума исследователя, делающего различные сопоставления и проводящего аналогии, сравнивающего, если можно так сказать, различные дороги, по которым он может пойти. Но для того чтобы делать, даже бессознательно, сопоставления, нужно быть знакомым с представлениями и фактами, подлежащими сопоставлению, а для того чтобы сравнивать пути, по которым можно идти, нужно, чтобы они уже были исследованы. Итак, открытие предполагает (обратное было бы совершенно безнравственно) длительный подготовительный период исследований, сбора фактов и размышлений. В этом смысле можно было бы сказать: «Гений – это долготерпение», – но точнее было бы сказать: «Предварительным условием всякого открытия является длительный и терпеливый труд», поскольку оно может возникнуть лишь на хорошо подготовленной почве. Как иногда говорят, эти вещи приходят лишь к тем, кто их заслужил». [20 , 305].

108. «Первым впечатлением, которое можно вынести из истории наук, … является впечатление о солидарности сменяющих друг друга поколений исследователей в работе по возведению здания науки. Каждое поколение получает в наследство от своих предшественников посредством устного или письменного обучения совокупность знаний, дающую ему возможность в свою очередь приступить к созидательной работе, которая позволит ему обогатить свои знания и передать впоследствии приумноженное наследство тем, кто за ним последует. Так от поколения к поколению возрастает совокупность фактов, установленных путем наблюдений или эксперимента, и совокупность представлений или теорий, служащих для их истолкования или предвидения новых фактов. Таким образом, по мере своего развития наука снабжает себя средствами, в которых она нуждается, с одной стороны, создавая или совершенствуя необходимые ей измерительные приборы и установки, с другой стороны, создавая новые представления и разрабатывая новые методы рассуждений или расчета. Таким образом, наука непрерывно кует новое материальное и духовное оружие, позволяющее ей преодолевать встающие на пути ее развития трудности, открывать для исследования неразведанные области». [20 , 308].

109. «Прогресс науки нельзя сравнивать с круговым движением, которое нас все время возвращает в одну и ту же точку; скорее он сравним с движением по спирали; движение по спирали периодически приближает нас к некоторым уже пройденным стадиям, но не следует забывать, что число витков спирали бесконечно и что витки увеличиваются и поднимаются вверх.

Впрочем, было бы неправильно говорить, как иногда говорят пессимистически настроенные умы, что научные теории последовательно терпят крах. Когда какой-либо теории действительно удалось правильно истолковать одну область физической реальности, то установленные ею соотношения, обоснованные ею методы точного предвидения всегда оказываются, надлежащим образом перенесенные и переистолкованные, в сменяющих ее новых теориях». [20 , 310].

110 . «История наук показывает нам науку в процессе постоянного развития, науку, непрерывно перерабатывающую и пересматривающую накопленные знания и их истолкование; она показывает нам прошлое, которое, несмотря на многие недостатки, подготавливает настоящее. Но мы никогда не должны забывать, что наша современная наука является лишь временной ступенью научного прогресса, что она сама, несомненно, изобилует недостатками и ошибками и что ее роль с этой точки зрения заключается как раз в подготовке будущего. Величайшей ошибкой, которую, кстати, очень легко допустить, было бы мнение о том, что современные представления науки являются окончательными…Мы никогда не должны забывать (история наук это доказывает), что каждый успех нашего познания ставит больше проблем, чем решает, и что в этой области каждая новая открытая земля позволяет предполагать о существовании еще неизвестных нам необъятных континентов». [20 , 317].

ХХХ . «Исследование и преподавание почти неотделимы друг от друга и чаще всего страдают от взаимной разобщенности. Исследование питает преподавание, а преподавание, необходимое для того, чтобы факел науки переходил от предыдущего поколения к последующему, укрепляет исследование». [20, 344].

111 . «Можно понять, какое существенное влияние было оказано на само направление развития человеческих знаний в тот день, когда кванты исподтишка вошли в науку. В тот самый день величественное и грандиозное здание классической физики было потрясено до самого основания, хотя никто тогда еще и не отдавал себе ясного отчета в этом. В истории науки немного было подземных толчков, сравнимых по силе с этим». [21 , 7].

000. «Существование кванта действия обнаружило совершенно непредвиденную связь между геометрией и динамикой: оказывается, что возможность локализации физических процессов в геометрическом пространстве зависит от их динамического состояния. Общая теория относительности уже научила нас рассматривать локальные свойства пространства-времени в зависимости от распределения вещества во Вселенной. Однако существование квантов требует гораздо более глубокого преобразования и больше не позволяет нам представлять движение физического объекта вдоль определенной линии в пространстве-времени (мировой линии). Теперь нельзя определить состояние движения, исходя из кривой, изображающей последовательные положения объекта в пространстве с течением времени. Теперь нужно рассматривать динамическое состояние не как следствие пространственно-временной локализации, а как независимый и дополнительный аспект физической реальности». [21, 187-188].

Длина волны квантовой частицы обратно пропорциональна ее импульсу.

Один из фактов субатомного мира заключается в том, что его объекты — такие как электроны или фотоны — совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы, и не как волны, а как совершенно особые образования, проявляющие и волновые, и корпускулярные свойства в зависимости от обстоятельств (см. Принцип дополнительности). Одно дело — это заявить, и совсем другое — связать воедино волновые и корпускулярные аспекты поведения квантовых частиц, описав их точным уравнением. Именно это и было сделано в соотношении де Бройля.

Луи де Бройль опубликовал выведенное им соотношение в качестве составной части своей докторской диссертации в 1924 году. Казавшееся сначала сумасшедшей идей, соотношение де Бройля в корне перевернуло представления физиков-теоретиков о микромире и сыграло важнейшую роль в становлении квантовой механики. В дальнейшем карьера де Бройля сложилась весьма прозаично: до выхода на пенсию он работал профессором физики в Париже и никогда более не поднимался до головокружительных высот революционных прозрений.

Теперь кратко опишем физический смысл соотношения де Бройля: одна из физических характеристик любой частицы — ее скорость. При этом физики по ряду теоретических и практических соображений предпочитают говорить не о скорости частицы как таковой, а о ее импульсе (или количестве движения ), который равен произведению скорости частицы на ее массу. Волна описывается совсем другими фундаментальными характеристиками — длиной (расстоянием между двумя соседними пиками амплитуды одного знака) или частотой (величина, обратно пропорциональная длине волны, то есть число пиков, проходящих через фиксированную точку за единицу времени). Де Бройлю же удалось сформулировать соотношение, связывающее импульс квантовой частицы р с длиной волны λ, которая ее описывает:

p = h /λ или λ = h /p

Это соотношение гласит буквально следующее: при желании можно рассматривать квантовый объект как частицу, обладающую количеством движения р ; с другой стороны, ее можно рассматривать и как волну, длина которой равна λ и определяется предложенным уравнением. Иными словами, волновые и корпускулярные свойства квантовой частицы фундаментальным образом взаимосвязаны.

Соотношение де Бройля позволило объяснить одну из величайших загадок зарождающейся квантовой механики. Когда Нильс Бор предложил свою модель атома (см. Атом Бора), она включала концепцию разрешенных орбит электронов вокруг ядра, по которым они могли сколь угодно долго вращаться без потери энергии. С помощью соотношения де Бройля мы можем проиллюстрировать это понятие. Если считать электрон частицей, то, чтобы электрон оставался на своей орбите, у него должна быть одна и та же скорость (или, вернее, импульс) на любом расстоянии от ядра.

Если же считать электрон волной, то, чтобы он вписался в орбиту заданного радиуса, надо, чтобы длина окружности этой орбиты была равна целому числу длины его волны. Иными словами, окружность орбиты электрона может равняться только одной, двум, трем (и так далее) длинам его волн. В случае нецелого числа длин волны электрон просто не попадет на нужную орбиту.

Главный же физический смысл соотношения де Бройля в том, что мы всегда можем определить разрешенные импульсы (в корпускулярном представлении) или длины волн (в волновом представлении) электронов на орбитах. Для большинства орбит, однако, соотношение де Бройля показывает, что электрон (рассматриваемый как частица) с конкретным импульсом не может иметь соответствующую длину волны (в волновом представлении) такую, что он впишется в эту орбиту. И наоборот, электрон, рассматриваемый как волна определенной длины, далеко не всегда будет иметь соответствующий импульс, который позволит электрону оставаться на орбите (в корпускулярном представлении). Иными словами, для большинства орбит с конкретным радиусом либо волновое, либо корпускулярное описание покажет, что электрон не может находиться на этом расстоянии от ядра.

Однако существует небольшое количество орбит, на которых волновое и корпускулярное представление об электроне совпадают. Для этих орбит импульс, необходимый для того, чтобы электрон продолжал движение по орбите (корпускулярное описание), в точности соответствует длине волны, необходимой, чтобы электрон вписался в окружность (волновое описание). Именно эти орбиты и оказываются разрешенными в модели атома Бора, поскольку только на них корпускулярные и волновые свойства электронов не вступают в противоречие.

Мне нравится еще одна интерпретация этого принципа — философская: модель атома Бора допускает только такие состояния и орбиты электронов, при которых не важно, какую из двух ментальных категорий человек применяет для их описания. То есть, иными словами, реальный микромир устроен так, что ему нет дела до того, в каких категориях мы пытаемся его осмыслить!

См. также:

1926

Французский физик Луи Виктор Пьер Раймон де Бройль родился в Дьеппе. Он был младшим из трех детей Виктора де Бройля и урожденной Полин де ля Форест д"Армайль. Как старший мужчина этой аристократической семьи, его отец носил титул герцога. На протяжении столетий де Бройли служили нации на военном и дипломатическом поприще, но Луи и его брат Морис нарушили эту традицию, став учеными.


Выросший в утонченной и привилегированной среде французской аристократии, Б. еще до поступления в лицей Жансон-де-Сайи в Париже был увлечен различными науками. Особый интерес в нем вызывала история, изучением которой Б. занялся на факультете искусств и литературы Парижского университета, где он в 1910 г. получил степень бакалавра. Не без влияния старшего брата Мориса Б. все больше увлекался физикой и, по его собственным словам, «философией, обобщениями и книгами [Анри] Пуанкаре», знаменитого французского математика. После периода интенсивных занятий он в 1913 г. получил ученую степень по физике на факультете естественных наук Парижского университета.

В тот же год Б. был призван на военную службу и зачислен во французский инженерный корпус. После начала в 1914 г. первой мировой войны он служил в радиотелеграфном дивизионе и провел большую часть военных лет на станции беспроволочного телеграфа при Эйфелевой башне. Через год после окончания войны Б. возобновил свои занятия физикой в частной научно-исследовательской лаборатории своего брата. Он изучал поведение электронов, атомов и рентгеновских лучей.

Это было увлекательное время для физиков, когда загадки возникали буквально на каждом шагу. В XIX в. классическая физика достигла столь больших успехов, что некоторые ученые начали сомневаться, остались ли нерешенными хотя бы какие-то принципиальные научные проблемы. И лишь в самые последние годы столетия были сделаны такие поразительные открытия, как рентгеновское излучение, радиоактивность и электрон. В 1900 г. Макс Планк предложил свою революционную квантовую теорию для объяснения соотношения между температурой тела и испускаемым им излучением. Вопреки освященному веками представлению о том, что свет распространяется непрерывными волнами, Планк высказал предположение о том, что электромагнитное излучение (всего лишь за несколько десятилетий до этого было доказано, что свет представляет собой электромагнитное излучение) состоит из неделимых порций, энергия которых пропорциональна частоте излучения. Новая теория позволила Планку разрешить проблему, над которой он работал, но она оказалась слишком непривычной, чтобы стать общепринятой. В 1905 г. Альберт Эйнштейн показал, что теория Планка – не математический трюк. Используя квантовую теорию, он предложил замечательное объяснение фотоэлектрического эффекта (испускание электронов поверхностью металла под действием падающего на нее излучения). Было известно, что с увеличением интенсивности излучения число испущенных с поверхности электронов возрастает, но их скорость никогда не превосходит некоторого максимума. Согласно предложенному Эйнштейном объяснению, каждый квант передает свою энергию одному электрону, вырывая его с поверхности металла: чем интенсивнее излучение, тем больше фотонов, которые высвобождают больше электронов; энергия же каждого фотона определяется его частотой и задает предел скорости вылета электрона. Заслуга Эйнштейна не только в том, что он расширил область применения квантовой теории, но и в подтверждении им ее справедливости. Свет, несомненно обладающий волновыми свойствами, в ряде явлений проявляет себя как частицы.

Новое подтверждение квантовой теории последовало в 1913 г., когда Нильс Бор предложил модель атома, которая соединила концепцию Эрнста Резерфорда о плотном центральном ядре, вокруг которого обращаются электроны, с определенными ограничениями на электронные орбиты. Эти ограничения позволили Бору объяснить линейчатые спектры атомов, которые можно наблюдать, если свет, испущенный веществом, находящимся в возбужденном состоянии при горении или электрическом разряде, пропустить через узкую щель, а затем через спектроскоп – оптический прибор, пространственно разделяющий компоненты сигнала, соответствующие различным частотам или длинам волн (различным цветам). В результате возникает серия линий (изображений щели), или спектр. Положение каждой спектральной линии зависит от частоты определенной компоненты. Спектр целиком определяется излучением атомов или молекул светящегося вещества. Бор объяснял возникновение спектральных линий «перескоком» электронов в атомах с одной «разрешенной» орбиты на другую, с более низкой энергией. Разность энергий между орбитами, теряемая электроном при переходе, испускается в виде кванта, или фотона – излучения с частотой, пропорциональной разности энергий. Спектр представляет собой своего рода кодированную запись энергетических состояний электронов. Модель Бора, таким образом, подкрепила и концепцию дуальной природы света как волны и потока частиц.

Несмотря на большое число экспериментальных подтверждений, мысль о двойственном характере электромагнитного излучения у многих физиков продолжала вызывать сомнения. К тому же в новой теории обнаружились уязвимые места. Например, модель Бора «разрешенные» электронные орбиты ставила в соответствии наблюдаемым спектральным линиям. Орбиты не следовали из теории, а подгонялись, исходя из экспериментальных данных.

Б. первым понял, что если волны могут вести себя как частицы, то и частицы могут вести себя как волны. Он применил теорию Эйнштейна – Бора о дуализме волна-частица к материальным объектам. Волна и материя считались совершенно различными. Материя обладает массой покоя. Она может покоиться или двигаться с какой-либо скоростью. Свет же не имеет массы покоя: он либо движется с определенной скоростью (которая может изменяться в зависимости от среды), либо не существует. По аналогии с соотношением между длиной волны света и энергией фотона Б. высказал гипотезу о существовании соотношения между длиной волны и импульсом частицы (массы, умноженной на скорость частицы). Импульс непосредственно связан с кинетической энергией. Таким образом, быстрый электрон соответствует волне с более высокой частотой (более короткой длиной волны), чем медленный электрон. В каком обличье (волны или частицы) проявляет себя материальный объект зависит от условий наблюдения.

С необычайной смелостью Б. применил свою идею к модели атома Бора. Отрицательный электрон притягивается к положительно заряженному ядру. Для того чтобы обращаться вокруг ядра на определенном расстоянии, электрон должен двигаться с определенной скоростью. Если скорость электрона изменяется, то изменяется и положение орбиты. В таком случае центробежная сила уравновешивается центростремительной. Скорость электрона на определенной орбите, находящейся на определенном расстоянии от ядра, соответствует определенному импульсу (скорости, умноженной на массу электрона) и, следовательно, по гипотезе Б., определенной длине волны электрона. По утверждению Б., «разрешенные» орбиты отличаются тем, что на них укладывается целое число длин волн электрона. Только на таких орбитах волны электронов находятся в фазе (в определенной точке частотного цикла) с самими собой и не разрушаются собственной интерференцией.

В 1924 г. Б. представил свою работу «Исследования по квантовой теории» («Researches on the Quantum Theory») в качестве докторской диссертации факультету естественных наук Парижского университета. Его оппоненты и члены ученого совета были поражены, но настроены весьма скептически. Они рассматривали идеи Б. как теоретические измышления, лишенные экспериментальной основы. Однако по настоянию Эйнштейна докторская степень Б. все же была присуждена. В следующем году Б. опубликовал свою работу в виде обширной статьи, которая была встречена с почтительным вниманием. С 1926 г. он стал лектором по физике Парижского университета, а через два года был назначен профессором теоретической физики Института Анри Пуанкаре при том же университете.

На Эйнштейна работа Б. произвела большое впечатление, и он советовал многим физикам тщательно изучить ее. Эрвин Шредингер последовал совету Эйнштейна и положил идеи Б. в основу волновой механики, обобщившей квантовую теорию. В 1927 г. волновое поведение материи получило экспериментальное подтверждение в исследованиях Клинтона Дж. Дэвиссона и Лестера Х. Джермера, работавших с низкоэнергетическими электронами в Соединенных Штатах, и Джорджа П. Томсона, использовавшего электроны большой энергии в Англии. Открытие связанных с электронами волн, которые можно отклонять в нужную сторону и фокусировать, привело в 1933 г. к созданию Эрнстом Руской электронного микроскопа. Волны, связанные с материальными частицами, теперь принято называть волнами де Бройля.

В 1929 г. «за открытие волновой природы электронов» Б. был удостоен Нобелевской премии по физике. Представляя лауреата на церемонии награждения, член Шведской королевской академии наук К.В. Озеен заметил: «Исходя из предположения о том, что свет есть одновременно и волновое движение, и поток корпускул [частиц], Б. открыл совершенно новый аспект природы материи, о котором ранее никто не подозревал... Блестящая догадка Б. разрешила давний спор, установив, что не существует двух миров, один – света и волн, другой – материи и корпускул. Есть только один общий мир».

Б. продолжил свои исследования природы электронов и фотонов. Вместе с Эйнштейном и Шредингером он в течение многих лет пытался найти такую формулировку квантовой механики, которая подчинялась бы обычным причинно-следственным законам. Однако усилия этих выдающихся ученых не увенчались успехом, а экспериментально было доказано, что такие теории неверны. В квантовой механике возобладала статистическая интерпретация, основанная на работах Нильса Бора, Макса Борна и Вернера Гейзенберга. Эту концепцию часто называют копенгагенской интерпретацией в честь Бора, который разрабатывал ее в Копенгагене.

В 1933 г. Б. был избран членом Французской академии наук, а в 1942 г. стал ее постоянным секретарем. В следующем году он основал Центр исследований по прикладной математике при Институте Анри Пуанкаре для укрепления связей между физикой и прикладной математикой. В 1945 г., после окончания второй мировой войны, Б. и его брат Морис были назначены советниками при французской Высшей комиссии по атомной энергии.

Б. никогда не состоял в браке. Он любил совершать пешие прогулки, читать, предаваться размышлениям и играть в шахматы. После смерти своего брата в 1960 г. он унаследовал герцогский титул. Б. скончался в парижской больнице 19 марта 1987 г. в возрасте 94 лет.

Помимо Нобелевской премии, Б. был награжден первой медалью Анри Пуанкаре Французской академии наук (1929), Гран-при Альберта I Монакского (1932), первой премией Калинги ЮНЕСКО (1952) и Гран-при Общества инженеров Франции (1953). Он был обладателем почетных степеней многих университетов и членом многих научных организаций, в том числе Лондонского королевского общества, американской Национальной академии наук и Американской академии наук и искусств. В 1945 г. он был выдвинут в состав Французской академии братом Морисом в знак признания его литературных достижений.

Наш курс называется физические основы современных полупроводниковых нанотехнологий. Название уже очерчивает круг вопросов, которых мы коснёмся.

ЛЕКЦИЯ 1. ВВЕДЕНИЕ

Сейчас очень много говорят о современных нанотехнологиях. А что же это такое? Я уверен, что большинство их наших сограждан не знают, что это такое. Между тем, по моему убеждению, современный специалист должен, по крайней мере, понимать смысл этих слов. Так же как культурный багаж человека составляет знание основ мировой истории, знание выдающихся полководцев, поэтов, писателей и учёных, когда-либо посетивших этот лучший из миров, так и, по крайней мере, представление о том, на основании чего формируется значительная, если не большая часть нашего окружения, должны иметь современные специалисты. Я ни в коем случае не преувеличиваю, когда говорю, что значительная, и всё увеличивающаяся часть нашего бытия, создаётся ныне на основе нанотехнологий. Примеры использования нанотехнологий можно встретить в компьютерах и телевизорах, всевозможных умных бытовых приборах, в мобильных телефонах, наконец! Вы видите, какой гигантский прогресс, например в компьютерах – в увеличении оперативной памяти, повышении тактовой частоты, в увеличивающемся числе всевозмож ных наворотов, происходит на наших глазах. И в значительной степени такой прогресс обусловлен развитием современных нанотехнологий.

Наш курс ознакомительный. Я вам прочитаю 6 или 7 лекций и у нас будет зачёт. Хочу сказать, что нигде в Украине, насколько я знаю, такой курс не читается, поэтому учебников нет и в качестве рекомендуемой литературы я могу посоветовать только ИНТЕРНЕТ.

По согласованию с руководством вашей кафедры я затрону физику, которая лежит в основе современных нанотехнологий, затем расскажу о самих методах получения наноприборов, затем мы рассмотрим источники излучения и фотоприёмники, и, наконец, коснёмся световодных линий передачи информации.

Итак, когда говорят о нанотехнологиях, то подразумевают, что устройства на основе нанотехнологий имею размеры порядка нанометров. Я напомню, что приставка “нано” означает 10 -9 . Единица длины в системе СИ 1 м. Тысячная доля м – 1 мм, тысячная доля мм – 1м, и тысячная доля микрометра – 1 нм. Но если, по мере уменьшения размеров объектов до долей микрона мы можем пользоваться обычной физикой для описания таких объектов, то уже для описания объектов нанометрового диапазона обычные представления не годятся. Нанообъекты необходимо описывать с привлечением квантовой механики. Т.о, для понимания физики нанообъектов необходимо вспомнить основные положения квантовой механики.

1.1. Идея де бройля

Многие считают, что создание квантовой механики – одно из выдающихся достижений человечества в 20 в. В принципе, основные положения квантовой механики были сформулированы в 20-х годах прошлого века. Начало было положено французским учёным Луи де Бройлем. Он выдвинул совершенно, казалось бы, сумасшедшую идею. Настолько необычную, что даже А.Эйнштейн назвал её сумасшедшей. Так, в письме к Н.Бору, выдающемуся датскому физику, А.Эйнштейн рекомендовал ему познакомиться с диссертацией дотоле никому неизвестного француза. А. Эйнштейн писал: “Прочтите её (диссертацию). Хотя и кажется, что её писал сумасшедший, написана она солидно”. Что же было такого необычного в диссертации Л.де Бройля? “В оптике,- писал он,- в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делается ли в теории вещества обратная ошибка?”. Таким образом, Л.де Бройль предположил, что частицы вещества, наряду с корпускулярными, обладают и волновыми свойствами, аналогично тому, как это уже было установлено для света 1 . И далее, основываясь на единстве природы, он постулировал, что электрон должен обладать волновыми свойствами, причём формулы для длины волны электрона и частоты Л.-де Бройль положил такие же, как и для света:

(1.2).

Здесь - постоянная Планка,р иЕ – импульс и энергия электрона, соответственно.

1.2. Волновая функция

Почти сразу же Идеи де-Бройля получили экспериментальное подтверждение в опытах по дифракции электронов на пространственной решётке (опыты Дэвисона и Джермера) и Томпсона. Вы можете почитать об этих опытах в 3-м томе Курса общей физики И.В.Савельева. В нашу задачу не входит систематическое изложение квантовой механики. Я просто напоминаю основные положения. Итак, любой микрочастице соответствует комплексная функция координат и времени – так называемая -функция, или волновая функция. Физический смысл имеет не сама-функция, а её квадрат модуля, который определяет вероятность (точнее, плотность вероятности) нахождения частицы в определённом состоянии. Отсюда следует естественное условие нормировки для волновой функции

(1.3).

Физически это означает, что частица объективно существует где-то в пространстве и вероятность её нахождения во всём пространстве есть вероятность достоверного события, которая, по определению, должна равняться 1. Тогда вероятность dP найти частицу в некотором объёмеdV будет определяться как

(1.4)

Явный вид -функции находится из решения уравнения Шредингера, которое для стационарных 2 состояний имеет вид

(1.5).

Здесь
- оператор Лапласа,m – масса частицы,Е иU – её полная и потенциальная энергии, соответственно.

1.3. ДВИЖЕНИЕ СВОБОДНОЙ ЧАСТИЦЫ.

Для свободной частицы потенциальная энергия равна нулю и уравнение Шредингера сводится к

(1.6)

Решением уравнения (1.6) будет плоская волна, которая распространяется вдоль оси x

(1.7)

Здесь
и полная энергияЕ равна кинетической энергии
. Вспоминаем, что классическое выражение для кинетической энергии
, откуда делаем вывод, что импульс электрона определяется как
в полном соответствии с формулой де Бройля (1.1) для длины волны электрона. На энергию и импульс никаких ограничений не накладывается - они могут быть любыми, а
, что означает, что электрон с одинаковой вероятностью можно встретить в любой точке вдоль осих .

Похожие статьи

  • Молочная рисовая каша в мультиварке Как приготовить кашу из риса в мультиварке

    Рисовая каша – вкусный, полезный и здоровый завтрак для всей семьи, который зарядит вас энергией на целый день. За счет содержания сложных углеводов она надолго обеспечивает ощущение сытости. Приготовив рисовую кашу в мультиварке, вы...

  • Печенье песочное через мясорубку

    Какая хозяйка не знает рецепта песочного печенья? С этого аппетитного десерта начинаются кулинарные опыты многих девушек. Рассыпчатую выпечку со всевозможными добавками обожают и дети, и взрослые. Еще один плюс песочных печенюшек –...

  • Говядина мраморная "Мираторг"

    Мраморная говядина считается одним из элитных сортов мяса. Во время термообработки тонкие прослойки жира в этой говядине тают, насыщая собой мясные волокна, отчего мясо получается сочным и нежным на вкус. Стейки из мраморной говядины...

  • Вырезка свиная: рецепты приготовления в духовке на любой вкус

    Привет дорогие мои читатели! Новый год на носу, поэтому хочу предложить вам замечательные рецепты горячих мясных блюд к новогоднему столу. Наша сегодняшняя «героиня» — свиная вырезка в духовке. Порылась я в кулинарных богатствах...

  • Салат из моркови и яблок Морковка с яблоком на терке для детей

    Кулинария предоставила нашему вниманию множество витаминных салатов, которые способны в той или иной степень нормализировать уровень витаминов в нашем организме. Дефицит витаминов особенно ощущается в весенний период, когда еще на полках...

  • Соус "Хойсин": рецепт приготовления, ингредиенты

    Легендарные восточные соусы покорили мир. В десятку самых популярных из них входит соус «Хойсин». Рецепт приготовления этой приправы включает в себя множество компонентов. Некоторые из них достать нелегко. Но наши соотечественники всегда...